US.Department
of Transportation

Federg] Highway
Adminlstretion

|I| II||l||II||III||I|I|III|I

PB93-227924

Pubhcailon No. FHWA-RD-80-111
Augusi 1983

Blowup of a Concrete Pavement
Adjoining a Rigid Structure

Research and Development
Turner-Fairbank Highway Research Center
: 6300 Georgetown Pike
Mclean, Virginia 22101-2296

s e — Ll

- Reproduced |

| National T:chma] Information Service
Us. Dn.-pnn.rr: ol of Cormeroe

| Spngficld, ' A 22161



FOREWORD

There is general agreement that pavement blowups are caused by
axial compression forces induced in the pavement by a rise in
temperature and moisture, and that they usually occur at traverse joints
or crack; although biowups ofa long continuously reinforced concrete
pavement (CRCP) with a traverse "hinge" is equivalent to 1ift-off
buckling of the pavement.” A related analysis was presented in 1985.<

This paper contains an analysis of the case when 2 long continuous
reinforced concrete pavement is subjected to temperature and moisture
increases and adjoins a rigid structure. The analysis is similar to the
one used in reference 1. The closed form solutions are evaluated
numerically. They are then compared with those of the jointless
pavement analyzed previously, to show the effect of the rigid structure
on pavement response.

This report will be of interest to researchers and engineers
concerned with the assessment of blowups of concrete pavements.

Sufficient copies of this report are being distributed by FHWA
memorandum to provide two copies to each FHWA Region, and three copies
to each FHWA Division and State highway agency. Direct distribution is
being made to the Division Offices. Additional copies for the public
are available for the National Technical Information Service (NTIS),
5285 Port Royal Road, Springfield, Virginia 22161.
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Acting Director, Office of Engineering
and Highway Operations
Research and Development

NOTICE

This document is disseminated under the sponsorship of the Department of
Transportation in~—the interest of information exchange. The United States
Government assumes no liability for this contents or use thereof.

The contents of this report reflect the views of the contractor, who is
responsible for the accuracy of the data presented herein. The contents do not
necessarily reflect the official policy of the Department of Transportation.

This report does not constitute a standard, specification or regulation.
The United States Government does not endorse products or manufacturers.

Trademarks or manufacturer’s name appear herein only because they considered
essential to the object of this document.
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CHAPTER I. INTRODUCTIOCN

There is general agreement that pavement blowups are caused by axial
compression forces induced in the pavement by a rise in temperature and
moisture. In 1984, analyses were presented for a long continuously reinforced
concrete pavement (CRCP) and for a pavement with a transverse "hinge," based
on the assumption that blowup is equivalent to 1ift-off buckling of the
pavement.” A related anmalysis was presented in 1985.°"

These two papers established the mechanism that leads to blowups. The
resulting formulations are nonlinear, but it was possible to solve them
exactly and in closed form. These analyses revealed a number of important
parameters, like the pavement thickness h, the sliding frictional resistance
at the interface of pavement and soil r*, the effective flexural stiffness of
the pavement EI = EI/(1-v'), the coefficient of linear thermal expansion of
pavement «, and the rotational and axial stiffness of the transverse joint or

crack.

The present paper contains the analysis for ancther case; when a long
continupusly reinforced concrete pavement, that is subjected to temperature
and moisture increases, adjoins a rigid structure, like a bridge abutment. The
analysis is similar to the one used in reference 1. The derived closed form
solutions are evaluated numerically. They are then compared with those of the
jointless pavement analyzed previously, in order to show the effect of the
rigid structure on pavement response.






CHAPTER II. CONCEPTUAL AND ANALYTICAL PRELIMINARIES

Consider a continuous concrete pavement that is adjoining an abutment as
shown in figure 1(a). It is assumed at first that the pavement may rotate
freely at the abutment but is constrained there from moving axially. This is
the most unfavorable condition for blowup occurrence. The anticipated blowup
mode is shown in figure 1(b). It is located near the abutment, because the
"hinge," that may form by a badly spalled transverse joint or crack, shown in
figure 2, weakens the pavement there and therefore reduces the temperature
increase that may cause the shown blowup.

(o) Before Buckling Concrete
Fovernent

| [
------------ AL LT TP TLTT T TT

P L Y T
S e

Abutment

PTLRAKATYSS
)
.t

(b) After Buckling

Abutment EfLUfﬁlig‘::-"f:

________________ IR

Figure 1. Problem under consideration.
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Figure 2. Spalled joint or crack at abutment

A moisture increase (or drop) in the concrete slab may be expressed by
an equivalent temperature rise (or drop). Therefore, in the following only
temperature changes will be discussed.

A uniform temperature increase above neutral induces, due to canstrained
expansions, a uniform axial compression force N,, as shown in figure 1(a). For
sufficiently large values of N, the pavement may buckle upward. Then in the
Tift-off region of length 1, part of the constrained expansions are released.
This results in a drop of the axial force in the lift-off region to N,.. In
the adjoining region, due to resistance to axial displacements- at the
interface of pavement and base, the constrained axial expan51ons vary; so does
the axial force N, < N < N,, as shown in figure 1(b).

In the following analysis, the concrete pavement is replaced by a beam
of rectangular cross section. Because the ratio of pavement width to thickness
is generally b[h_> 20, for numerica1 evaluations the bending stiffness is
assumed to be EI = EI/{1-v'), to account for plate action. The x-axis is
placed through the centroid as reference axis. Note that x is a Lagrange
coordinate. :

Graphs of the axial shearing resistance at the interface of pavement and
base, caused by axial displacements, are shown in figure 3. The test results
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Figure 3. Axial resistance-displacement response;

are shown as solid curves.”™ In the following this response is represented by
the non-linear relation:

r(x) = rotgh{pu(x)} | (L

shown as the dash-dot-dash curve. The parameter r, is the sliding frictional
resistance and ¢ is a second parameter for fitting the analytical expression
with the test data. The shown curve is for g = 10/cm. Note that r, = br¥*
where b is the width of pavement under consideration and r* is the sliding
frictional resistance per unit area. Values for r*, based on test data from
references 3 and 4 are shown in figure 4. Although the resistance response
shown in figure 3 is non-elastic, the use of relation (1) is justified because
during blowup the axial displacements are monotonically increasing.
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In the following analysis it is assumed that the pavement is subjected
to a uniform temperature increase, T, above neutral and a uniformly
distributed own weight, q,, per unit length of pavement axis. Because the
vertical deflections in the adjoining region are very small, it is assumed
that the base is rigid. As shown in reference 5 for a related problem, this
appears to be justified. Furthermore it is assumed that prior and during
buckling the response of the concrete pavement is elastic.

An important feature of the formulation to be used is that, although the
resulting differential equations are non-linear, they can be solved in closed
form. The solution yields the post-buckling displacements and axial forces in
the pavements. The anticipated results are shown schematically in-figure 5.
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Each point on the shown egquilibrium branches corresponds to an
equilibrium configuration of the pavement. B8ranch I corresponds to the
straight unbuckled equilibrium states and Branch II to the vertically deformed
states. When the pavement is subjected to a temperature increase T, < T,
there exists only the straight (stable) equilibrium configuration. However,
to a temperature increase T, > T, there correspond three states of
equilibrium: The (stable) straight state @ , the (unstable) vertically
deformed configuration @ on branch AL, and the (stable) vertically deformed
configuration @ on branch LB. Thus, when the pavement buckles at a
temperature increase T, > T,, it will move to the deformed equilibrium
configuration & on branch LB.

A static stability analysis of a concrete pavement subjected to axial
compression forces consists of two parts: (1) The determination of all
equilibrium states and (2) the investigation of which of the determined
equilibrium states are stable and which are not. From the nature of the
post-buck1ling equilibrium branches, and their stability, it follows that the
"safe range” of temperature increases to prevent pavement buckling may be
determined solely from the post-buckling eguilibrium branch, as shown in
figure 5. It is:

0<Tg<T, (2)



This concept was used in the two earlier analyses, references 1 and 2, and
will be used in the following study.

Because pavements are usually not "perfectly” straight, it is of
interest to know the effect of vertical geometric imperfections on the safe
temperature range. An equilibrium branch for relatively small imperfections is
shown schematically in figure 5, as a dashed line. Noting that the T,-value
for this branch is very close to the T,-value for the perfectly straight
pavement it is concluded that criterion (2) is also valid for a pavement with
small vertical imperfections.



CHAPTER III.- ANALYSIS OF PAVEMENT

Following the methodology developed im references 1 and 2, the
equilibrium states of the vertically deformed pavement, shown in figure 1(b),
are described by the differential equations:

(ﬁwlu)" — [EA(el —_ aTO)Wi]' _— (a)
. 0<x<1 (3
[EACe, — aTy)] =0 (b)
and
wa(x) =0 (a)
’ l<x <= (4)
—(EAug) + rotgh(uug) = 0 (b)
The corresponding boundary and matching conditions are:
w,(0) =0 ; wi(0) =0 ;o uw (0) =0 ' (5
w,(I) =0 ; wi(l)y =0 ; wi(l) =0
(6)
u, (1) = ua(l) ; u; (1) = vz (D)
and the reqularity condition:
lim[ug (x),uf( -0
i | 7)

The above formulation consists of three non-linear differential equations and
nine conditions for the determination of the eight integration constants (4
for w,, 2 for u, and 2 for u,) and the iift-off length 7.

In equations (3) to (7), u,(x) and w,(x) are the axial and vertical
displacements at point x of the pavement reference axis x, the subscript n

denotes the pavement region, “1" refers to the buckled region and "a" refers
to the adjoining region,

. 1
= [ = 1 2
€n up + 7 ¥n

( Y =4d( )/dx, q, is the constant pavement weight per unit length, * and
are the axial resistance parameters, as defined by relation (1). E is Young's
modulus of pavement, A is its cross-sectional area, and ET is its bending

9



stiffness. o is the coefficient of linear thermal expansion of pavement and
T, is the uniform temperature increase in the pavement above the "neutral”
temperature.

The corresponding axial forces, bending moments, and shearing forces in
the pavement are:

No(x) = - EA(en — aTy) ; N > 0 compression

Mp(x) = ~ ETwy (8)

Vo(x) = — (ETwg) " + EA(ep ~ aTg)wy

Next, the formulation in equations (3) to (7) is solved. The
differential equations in (3) and (4) are non-linear. However, since equation
(3a), when integrated, yields:

EA(e; — aTy) = const. = —KN; 0 <x< I (9

the equation .{3b) reduces, for EI = constant, to

EIwy + New) = qq ; 0 <x <1 (10)

a linear ordinary differential equation with constant coefficients. The
differential equation (4b) is also non-linear. However, since it is of the
form u" -~ F[u] it may be easily solved. These analytical features make it
possible to solve the above non-linear formulation in closed form.

According to the equations in (8), the left-hand side of equation (9) is
the axial force in the buckled region. It is denoted by -N,. Thus, the axial

compression force in the buckled region 0 < x < 1 is N, and is constant in
this domain.

The general solution of eguation (10) is

X *
W (x) = Ajcosdx + A,sindkx + A,x + A, + 5%5 %2 | (11)

A= uﬁt//ff Q% = qo/ET (12)

Since for the problem under consideration N, > 0, it follows that A is a real
number.

where

The 1ntegration constants A, to A, are determined from the first two
conditions in eguation (5) and in equation (6). They are:

A, = ga* . A, = g* Alsindl + cosAl — (A1)%/2 - 1
oot ' 2 XlcosAl — sinAl
(13)
Ay - g; Al(sindl — Alcoskl/?) + cosil — 1 : A - q*
A Alcosil — sinil 4 3

10



when tghl = Al.

Substituting the obtained w,(x) into the condition w(1) = 0 given in
equation (6), it follows that it is satisfied when:

2(1 — cosAl) = Alsinil (14)
The non-zero roots of this equation are:
Al = 2x, 8.987, ... (15)

It may be shown that the first root 2r corresponds to the deformation shape
shown in figure 1{b). This is the condition for the determination of 1.
Namely:

2w EI
L= N~ 2n 7, (16)

With A7 = 2+, the constants A, to A, simplify ang w,(x) becomes:’

The above expression for w (x), in conjunction with condition (16), 4 =
Zn/1, still contain the unknown ) ='¥N /EI. It is determined in the following
as part of the soluticn of the remaining equaticns in the foregoing
formulaticn; namely those for u,(x) and u,(x).

The first integral of equation (3b), equation (9), is the non-linear
differential equation of the first order:
1

EA(ui + 5 wi? —aTg) = - K¢ : 0<x <l (9")

Since at this point of the analysis w,{x) is a known function, given in
equation (17), the above equation reduces to the linear ordinary differential
equation for u, : \

uf(x) = [a'ro - EA] - 5 wi2(x) | | (18)

Integrating it from 0 to x, and noting that accord1ng to equation (5) u,(0)=0,
the following is obtained: .

X
K
u, (x) = [aTo - Eﬁ]x - % '[Wiz(f)d& (19)

o}

11



Because EA = constant and w,(x) = 0, equation (4b) reduces to the non-
linear differential eguation:

EAU’& = Iotgh[pua(x)] . l < x < o ' C(20)

This equation is a special case of u"(x) - F[u(x)]; a well known equation from
non-1inear vibration theory. It is solved, in closed form, by noting the
identity 2u” = d(u’’)/du. With it, equation (20) may be written as:

d(ui?)

I

Y
Fa_ teh(pug)duy (21)

Integrating it yields:

uj?(x) = %ﬂ J. tgh(puy)duy + B,
= 2o In{cosh{uu,(x)]} + B, (22)

EA

Because the reguiarity condition, egquaticn (7), it follows that B, = 0. Thus:

w30 = 4 {28 1n(coshima(D)]) (23)

The positive sign is retained, because the anticipated axial displacements
ua(x) for x > 0 will be negative, decreasing in magnitude with increasing x.

Substituting ul(x) given in (18) and u](x) given in (23) into the fifth
condition of (6), u! 1) = u} (1), and noting that according to the second
condition of (6) w! (1) = 0, we obtain:

!

_ Ny _12rg - 4
oTo — 5h \f”EA In{coshlpug(1)]) = O (24)

According to eguation (6) the condition u,(7) = u,(7) still has to be
satisfied. The expression u,(7) is obtained by integrating equation (18) from
0 to 7. Since u(0) = 0 it follows that:

1

u, (1) = [aTo - g—;]l - % Jwiz(x)dx' (25)
o

Eliminating u,{(?) in equation (24) using the remaining matching condition
U, (1) - u, (1) and then utilizing equation (25), we obtain:

12



aT, — E—K —Vi—’iﬁ lnu:cosh{p[[aTo - %:]Z - J}}:u (26)

J - % J w!2(£)dt = 0.00008715q% 1" (27)

0

The solution for the problem shown in figure 1 is just completed. For a
given concrete pavement (i.e. for known values of £, A, I, v, a, q,, ¥, and )
the numerical evaluation of the obtained solution consists of the following
steps: Choose a positive value of N, and determine the corresponding x =R /EI
and then 1 = 22 /A. For this (4,1} pair calculate the corresponding T, value
from equation (26) in conjunction with equation (27). The corresponding value
of w, 1is calculated from equation {17), by first forming dw,/dx = O which
yields x/1 = (0.3464 and then by substituting this value into w,(x). The
result is:

Vmax = — 0.005532 q,1' / EI (28)

These steps are repeated for a range of N, values or interest.

13






CHAPTER IV. NUMERICAL EVALUATION AND DISCUSSION OF RESULTS

The numerical evaluation of the derived solution was performed for a
pavement of constant rectangular cross section, for pavement thicknesses h = 6
in (15 cm), 8 in (20 cm), 10 in (25 cm), 12 in {30 cm) and 14 in (35 in). It
may be easily verified that the obtained results are independent of the
pavement width b because r,, A, I, and N, are linearly varying with b. The
chosen pavement parameters are:

E = 4.35 x 108 1b/in? (3,000 kN/cm2?) : v = 0.3
-6 fo YL ; ' (23)
a = 0.5 x 1078/°F (0.9 x 10°8/°C) ; v = 150 lb/ft® (23.6 kN/m®)

y being the unit weight of the pavement material.

Since generally the reinforcement ratio in the pavement is very low (0.5
to 0.75 percent), and it is usually placed near the mid-plane of the cross
section, the effect of the reinforcing bars was neglected when calculating the
cross-sectional area A and the effective flexural stiffness EI - EI/{(1 - v2).

The sliding frictional resistance values r* at the interface of pavement and

base per unit length and unit width of pavement, as defined in eguation (1),
was determined from the test data in reference 3 and are shown in table 1.

Table 1. Dependence of r* on h.”

in 6 8 10 12 14

) (cm) (15) (20) (25) (30) (33)
, 1b/in? 1.34 1.55 1.65 1.74 1.81
o (N/em?) (0.92) | (107) (1.14) | (1.20) (1.25)

To closely approximate the test data in references 3 and 4, it was assumed
that ¢ = 25.4/in (10/cm) for all five pavement thicknesses, as shown in figure
3. _

The obtained solution was evaluated for the above parameters. The
results are shown in figure 6. Note the drop of the axial force in the buckled
region. Also note that the magnitude of the lift-off displacement, w,, depends
on the temperature increase T, at which buckling takes place; the higher the
temperature increase the larger is w,,. For example for a pavement with h = 25
cm, to an increase T, = T, = 56°C there corresponds a w,, = 36 cm where as to
T, = 65 -C there corresponds w,, = 75 cm; thus more then twice as large.

To show the effect of pavement thickness h on the safe tempture

increases above neutral, these results are plotted in figure 7 as a solid
line. Also shown in this figure, as a dashed line, is the corresponding curve.

15
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Figure 6. Equilibrium branches and axial forces in pavement. (For the
determination of N,, b= 24 ft (725 cm) was used.)
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for the contingusly reinforced concrete pavement (CRCP) far away from the
bridge abutment as determined in references 1 and 2. Note the efect of the
hinge and "rigid" abutment on the safe temperature increase.

Next, consider the case when the pavement that was rigidly attached to
the abutment exhibits, after a time, a transverse crack at this Tlocation.
This will correspond to the case shown in figure 1, but with rotational
resistance in the hinge that will depend on the degree of spalling, as
indicated in figure 2. This resistance will increase the safe temperature
increase above the values of the solid curve shown in figure 7.

The axial compression force that a CRCP will generate is N, = EA a T,.
For the pavement parameters used above, h= 10 in (25 cm) and b= 24 ft
(725 cm), this corresponds to an axial compression force, per °C, of:

%t ~ EAa = 3,000 x 25 x 725 x 0.9 x 1075 & 430 kN/°C
[o]

This rather large compression force (per °C) demonstrates the importance of
the neutral temperature on pavement blows. The higher the neutral temperature
the less likely is the possibility that blowup will occur. Note, however, that
although a higher neutral temperature may prevent blowups, it will lead {(in
CRCP’s) to higher axial tensile forces in the pavement during the winter, that
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may cause pavement ruptures. This indicates that the construction season has
an effect on the pavement response.

Scme pavement engineers.are of the opinion that the shearing resistance
at the interface contributes to the formation of transverse cracks and thus
should be minimized; for example, by placing plastic sheets at the interface.
To establish this effect on blowups, the obtained solution was evaluated
numerically for different values of the sliding frictional resistance
parameter, r¥, without changing the other parameters. The results are shown
in figure 8. Note that, according to the above analysis and those of
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Figure 8. Dependence of T, on r#

18



references 1 and 2, a reduction of tnis resistance, r#¥, also reduces the safe
temperature range, 0 < T < T, and thus has an adverse effect on pavement
blowups. For preventing blowups, the sliding frictional resistances should be
as high as possible.

To reduce the axial forces that a concrete highway pavement will exert on a
bridge pier, short section of a black top slab is often inserted between the
pavement and the abutment. This allows the end zone of the pavement, during
periods of high temperatures, to expand toward the bridge, preventing the
build up of high compression forces in the vicinity of the bridge abutment.
However, the continuous expansion and contracticn af the pavement in this
region creates maintenance problems, especially when the shear1ng resistance
between pavement and subgrade is very small.
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