
U.S. Department 
of Transportation 

fedeli"@il Migtilw@v 
Admin!$~r@~i@1111 

. . . 

i 1111111111111111111111111111 
PB93-227924 

Publication No. FHWA-RD-90-111 
August 1993 

Blowup of a Concrete Pavement 
Adjoining a Rigid Structure 

( 

RtjrodllCMby: 
Nill.ion.al Tn:Jmclill Infunnat.JDO Service 
U .S, Dcpartm:tll of Co~ 
Spcingfitld, VA 22161 

Research and Development 
Turner-Fairbank Highway Research Center 

6300 Georgetown Pike 
McLean, Virginia 22101-2296 



fOR.IEWOlRD 

There is general agreement that pavement blowups are caused by 
axial compression forces induced in the pavement by a rise in 
temperature and moisture, and that they usually occur at traverse joints 
or crack; although blowups ofa long continuously reinforced concrete 
pavement (CRCP) with a traverse "hinge" is eq~ivalent to lift-off 
buckling of the pavement. <o A re lated analysis was presented in 1985. rn 

This paper contains an analysis of the case when a long continuous 
reinforced concrete pavement is subjected to temperature and moisture 
increases and adjoins a rigid structure. The analysis is similar to the 
one used in reference 1. The closed form solutions are evaluated 
numerically. They are then compared with those of the jointless 
pavement analyzed previously, to show the effect of the rigid structure 
on pavement response. 

This report will be of interest to researchers and engineers 
concerned with the assessment of blowups of concrete pavements. 
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are available for the National Technical Information Service (NTIS), 
5285 Port Royal Road, Springfield, _Virginia 22161. 
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Symbol When You Know Multlply By To find Symbol Symbol When You Know Multlply By To Find Symbol 
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yd yards 0.914 meters m m meters 1.09 yards yd 
mi miles 1.61 kilometers km km kilometers 0.621 miles mi 

AREA AREA 

ln1 square Inches 645.2 square millimeters mmZ mm2 square millimeters 0.0016 square inches in2 

ft2 square feet 0.093 square meters ml m2 square meters 10.764 square feet ft2 
yd2 square yards 0.836 square meters ml m2 square meters 1.195 square yards ac 
ac acres 0.405 hectares ha ha hectares 2.47 acres mi2 

mi1 square miles 2.59 square kilometers km2 km2 square kilometers 0.386 square miles 

VOLUME VOLUME 

H oz ftuidounces 29.57 milliliters ml ml milliliters 0.034 fluid ounces fl oz 
gal gallons 3.785 liters I I liters 0.264 gallons gal 

t-'· Ill ftl cubic feet 0.028 cubic meters m3 m3 cubic meters 35.71 cubic feet ftl 
t-'· yd' cubic yards 0.765 cubic meters m3 m3 cubic meters 1.307 cubic yards yo' 

NOTE: Volumes greater than 1000 I shall be shown in m3. 

MASS MASS 

oz ounces 28.35 grams g g grams 0.035 ounces oz 
lb pounds 0.454 kilograms kg kg kilograms 2.202 pounds lb 
T short tons (2000 lb) 0.907 megagrarns Mg Mg megagrarns 1.103 short tons (2000 lb) T 

TEMPERATURE (exact) TEMPERATURE (exact) 

•F Fahrenheit 5(F-32)/9 Celcius •c •c Celcius 1.8C + 32 Fahrenheit •F 
temperature or (F-32)/1.8 temperature temperature temperature 

ILLUMINATION ILLUMINATION 

le loot-atndles 10.76 lux I Ix lux 0.0929 foot-candles le 
fl loot-L.amberts 3.426 candela/m2 cdlm2 cdlm2 candela/m2 0.2919 foot-l.amberts fl 

FORCE and PRESSURE or STRESS FORCE and PRESSURE or STRESS 

lbl poundlorce 4.45 newtons N N newtons 0.225 poundlorce lbl 

psi poundlorce per 6.89 kilopascals kPa kPa kilo pascals 0.145 poundlorce per psi 
square inch square inch 

• SI is the symbol for the International System of Units. Appropriate (Revised August 1992) 
rounding should be made to comply with Section 4 of ASTM E380. 
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CHAPTER I. INTRODUCTION 

There is general agreement that pavement blowups are caused by axial 
compression forces induced in the pavement by a rise in temperature and 
moisture. In 1984, analyses were presented for a long continuously reinforced 
concrete pavement (CRCP) and for a pavement with a transverse "hinge," based 
on the assumption that blowup is equivalent to lift-off buckling of the 
pavement.") A related analysis was presented in 1985.rn 

These two papers established the mechanism that leads to blowups. The 
resulting formulations are nonlinear, but it was possible to solve them 
exactly and in closed form. These analyses revealed a number of important 
parameters, like the pavement thickness h, the sliding frictional resistance 
at the interfi!..Q! of pavement and soil rt, the effective flexural stiffness of 
the pavement EI = EI/(l-v'), the coefficient of linear thermal expansion of 
pavement a, and the rotational and axial stiffness of the transverse joint or 
crack. 

The present paper contains the analysis for another case; when a long 
continuously reinforced concrete pavement, that is subjected to temperature 
and moisture increases, adjoins a rigid structure, like a bridge abutment. The 
analysis is similar to the one used in reference l. The derived closed form 
solutions are evaluated numerically. They are then compared with those of the 
jointless pavement analyzed previously, in order to show the effect of the 
rigid structure on pavement response. 
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CHAPTER II. CONCEPTUAL AND ANALYTICAL PRELIMINARIES 

Consider a continuous concrete pavement that is adjoining an abutment as 
shown in figure l(a). It is assumed at first that the pavement may rotate 
freely at the abutment but is constrained there from moving axially. This is 
the most unfavorable condition for blowup occurrence. The anticipated blowup 
mode is shown in figure l(b). It is located near the abutment, because the 
"hinge," that may form by a badly spalled transverse joint or crack, shown in 
figure 2, weakens the pavement there and therefore reduces the temperature 
increase that may cause the shown blowup. 

(a) Before Buckling Concrete 

Po,emenf 

7 
Abutment 

I I I I I I I~ I I I I I I I I 
. Nt = EAo.T 

0
-

(b) After Buckling 

Figure 1. Problem under consideration. 
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Figure 2. Spalled joint or crack at abutment 

A moisture increase (or drop) in the concrete slab may be expressed by 
an equivalent temperature rise (or drop). Therefore, in the following only 
temperature changes will be discussed. 

A uniform temperature increase above neutral induces, due to constrained 
expansions, a uniform axial compression force N,, as shown in figure l(a). For 
sufficiently large values of N, the pavement may buckle upward. Then in the 
lift-off region of length 7, part of the constrained expansions are released. 
This results in a drop of the axial force in the lift-off region to N,. In 
the adjoining region, due to resistance to axial displacement~ at the 
interface of pavement and base, the constrained axial expansions vary; so does 
the axial force N, < N < N" as shown in figure l(b). 

In the following analysis, the concrete pavement is replaced by a beam 
of rectangular cross section. Because the ratio of pavement width to thickness 
is generally blll...> 20, for numerical evaluations the bending stiffness is 
assumed to be EI= EI/(l-v'), to account for plate action. The x-axis is 
placed through the centroid as reference axis. Note that xis a Lagrange 
coordinate. 

Graphs of the axial shearing resistance at the interface of pavement and 
base, caused by axial displacements, are shown in figure 3. The test results 
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Figure 3. Axial resistance-displacement response. 

are shown as solid curves.()) In the following this response is represented by 
the non-linear relation: 

r(x) - r0 tgh[µu(x)) (1) 

shown as the dash-dot-dash curve. The parameter r 0 is the sliding frictional 
resistance andµ is a second parameter for fitting the analytical expression 
with the test data. The shown curve is forµ= 10/cm. Note that r 0 = brt 
where bis the width of pavement under consideration and r! is the sliding 
frictional resistance per unit area. Values for rt, based on test data from 
references 3 and 4 are shown in figure 4. Although the resistance response 
shown in figure 3 is non-elastic, the use of relation (1) is justified because 
during blowup the axial displacements are monotonically increasing. 
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Figure 4. Sliding frictional resistance as a function of pavement thickness 
(based on test data presented in references 3 and 4). 

In the following analysis it is assumed that the pavement is subjected 
to a uniform temperature increase, T0 above neutral and a uniformly 
distributed own weight, q0 , per unit length of pavement axis. Because the 
vertical deflections in the adjoining region are very small, it is assumed 
that the base is rigid. As shown in reference 5 for a related problem, this 
appears to be justified. Furthermore it is assumed that prior and during 
buckling the response of the concrete pavement is elastic. 

An important feature of the for~ulation to be used is that, a0though the 
resulting differential equations are non-linear, they can be solved in closed 
form. The solution yields the post-buckling displacements and axial forces in 
the pavements. The anticipated results are shown schematically in-figure 5. 
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Figure 5. Typical equilibri~m branches for pavement. 

Each point on the shown equilibrium branches corresponds to an 
equilibrium configuration of the pavement. Branch I corresponds to the 
straight unbuckled equilibrium states and Branch II to the vertically deformed 
states. When the pavement is subjected to a temperature increase T0 < T,, 
there exists only the straight (stable) equilibrium configuration. However, 
to a temperature increase T0 > T,, there correspond three states of 
equilibrium: The (stable) straight state CD , the (unstable) vertically 
deformed configuration 0 on branch AL, and the (stable) vertically deformed 
configuration G on branch LB. Thus, when the pavement buckles at a 
temperature increase T0 > T,, it will move to the deformed equilibrium 
configuration G on branch LB. 

A static stability analysis of a concrete pavement subjected to axial 
compression forces consists of two parts: (1) The determination of all 
equilibrium states and (2) the investigation of which of the determined 
equilibrium states are stable and which are not. From the nature of the 
post-buckling equilibrium branches, and their stability, it follows that the 
"safe range" of temperature increases to prevent pavement buckling may be 
determined solely from the post-buckling equilibrium branch, as shown in 
figure 5. It is: 

(2) 
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This concept was used in the two earlier analyses, references 1 and 2, and 
will be used in the following study. 

Because pavements are usually not "perfectly" straight, it is of 
interest to know the effect of vertical geometric imperfections on the safe 
temperature range. An equilibrium branch for relatively small imperfections is 
shown schematically in figure 5, as a dashed line. Noting that the T,-value 
for this branch is very close to the T,-value for the perfectly straight 
pavement it is concluded that criterion (2) is also valid for a pavement with 
small vertical imperfections. 
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CHAPTER III. ANALYSIS OF PAVEMENT 

Following the methodology developed in references 1 and 2, the 
equilibrium states of the vertically deformed pavement, shown in figure l{b), 
are described by the differential equations: 

0 

and 

(a) 

(b) 

(a) 

(b) 

} 

} 

The corresponding boundary and matching conditions are: 

w1(0) - 0 

nnd the reqularity condition: 

lim[ua(x),u~(x)] ➔ O 
x➔<» 

0 

0 < X < Z (3) 

(4) 

(5) 

} (6) 

(7) 

The above formulation consists of three non-linear differential equations and 
nine conditions for the determination of the eight integration constants (4 
for w,, 2 for u,, and 2 for u.) and the lift-off length 7. 

In equations (3) to (7), u"(x) and w"(x) are the axial and vertical 
displacements at point x of the pavement reference axis x, the subscript n 
denotes the pavement region, "l" refers to the buckled region and "a" refers 
to the adjoining region, 

1 
En= u' + - w' 2 

n 2 n 

( )' = d( )/dx, q0 is the constant pavement weight per unit length,! and~ 
are the axial resistance parameters, as defined by relation (1). E is Young's 
modulus of pavement, A is its cross-sectional area, and EI is its bending 
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stiffness. a is the coefficient of linear thermal expansion of pavement and 
T0 is the uniform temperature increase in the pavement above the "neutral" 
temperature. 

The corresponding axial forces, bending moments, and shearing forces in 
the pavement are: 

Nn(x) EA(En - oT0 ) N > 0 compression} 

Mn(X) Eiwi,_ 

Vn(x) - - (Eiw;.;_)' + EA(En - oT
0

)w~ 

(8) 

Next, the formulation in equations (3) to (7) is solved. The 
differential equations in (3) and (4) are non-linear. However, since equation 
(3a), when integrated, yields: 

0 < X < l 

the equation .X3b) reduces, for EI= constant, to 

0 < X < l 

a linear ordinary differential equation with constant coefficients. The 
differential equation (4b) is also non-linear. However, since it is of the 
form u" - F[u] it may be easily solved. These analytical feat1cJres make it 
possible to solve the above non-linear formulation in closed form. 

(9) 

(10) 

According to the equations in (8), the left-hand side of equation (9) is 
the axial force in the buckled region. It is denoted by -N,. Thus, the axial 
compression force in the buckled region O < x < l is N, and is constant in 
this domain. 

The general solution of equation (10) is 

( 11) 

where 

(12) 

Since for the problem under consideration N, > 0, it follows that). is a real 
number. 

The integration constants A, to A, are determined from 
conditions in equation (5) and in equation (6). They are: 

~ ~ AZsinAZ + cosAZ - (AZ) 2 /2 - 1 
Al - A4 A 2 - A4 A1COSA! - sinA! 

~ Al(sinA! - AZcosA!/2) + cosAZ - 1 
A3 - A3 AZcosAZ - sinAZ 

10 

the first two 

(13) 



when tgA ! "' AZ . 

Substituting the obtained w,(x) into th~ condition w~(l) = 
equation (6), it follows that it is satisfied when: 

2(1 - cos>.!)= >.lsinA! 

The non-zero roots of this equation are: 

Al= 21r, 8.987, ... 

0 given in 

(14) 

(15) 

It may be shown that the first root 2w corresponds to the deformation shape 
shown in figure l(b). This is the condition for the determination of l. 
Namely: 

(16) 

With U = 2w, the constants A, to AJ simplify and w,(x) becomes:'"' 

(17) 

The above expression for w,(x), in conjunction with condition (16), i. = 
Zw/7, still contain the unknown>. ~7/NtfEI'. It is determined _in the following 
as part of the solution of the remaining equations in the foregoing 
formulation; namely those for u,(x) and u.(x). 

The first integral of equation (3b), equation (9), is ·the non-linear 
differential equation of the first order: 

1 2 -EA(ui + z wi - aT0 ) - - Ne 0 < x < l (9' ) 

Since at this point of the analysis w,(x) is a known function, given in 
equation (17)i the above equation reduces to the linear ordinary differential 
equation for u, 

ui(x) = (aT0 - ~] - ½ w;2(x) (18) 

Integrating it from D to x, and noting that according to equation (5) u,(0)=0, 
the following is obtained: 

X 

u1(X) = (aT0 - ~]x - ½ Jw( 2(E)dE (19) 

0 

11 



Because EA= constant and wa(x) - 0, equation (4b) reduces to the non­
linear differential equation: 

Z<x<m 

This equation is a special case of u"(x) - F[u(x)]; a well known equation 
non-linear vibration theory. It is solved, in closed form, by noting the 
identity 2u" = d(u' 2 )/du. With it, equation (20) may be written as: 

d(ua'2) - Lro th( )d - EA g µua ua 

Integrating it yields: 

(20) 

from 

(21) 

(22) 

Because the regularity condition, equation (7), it follows that B, = 0. Thus: 

u.;(x) = (:!.:) l~~ ln(cosh[µua(1)]]
1 

(23) 

The positive sign is retained, because the anticipated axial displacements 
u.(x) for x > 0 will be negative, decreasing in magnitude with increasing x. 

Substituting u;(x) given in (18) and u;(x) given in (23) into the fifth 
condition of (6), u; l) = u; (l), and noting that according to the second 
condition of (6) w; (l) = 0, we obtain: 

0 (24) 

According to equation (6) the condition u,(7) = u.(7) still has to be 
satisfied. The expression u,(7) is obtained by integrating equation (18) from 
0 to 7. Si nee u, ( 0) = 0 it fol lows that : 

l 

u1 (l) = [ctT0 - ~] l - ½ Jwj 2 (x)dx · 

0 

Eliminating u.(l) in equation (24) using the rema1n1ng matching condition 
u.(l) - u,(l) and then utilizing equation (25), we obtain: 

12 
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where: c5 > 

I 

J = ½ J w;. 2 (Ode - 0. 00008715q*
2 

z 
7 

• 

0 

(26) 

(27) 

The solution for the problem shown in figure 1 is just completed. For a 
given concrete pavement (i.e. for known values of E, A, I, v, o, q0 , r0 andµ) 
the numerical evaluation of the obtained solution consists of the followina ,~= 
steps: Choose a positive value of N, and determine the corresponding A -~Nt/EI 
and then 7 = 2T /1. For this (1,7) pair calculate the corresponding T0 value 
from equation (26) in conjunction with equation (27). The corresponding value 
of w~, is calculated from equation (17), by first forming dw,/dx = 0 which 
yields x/J = 0.3464 and then by substituting this value into w,(x). The 
result is: 

4 -
Wmax - - 0.005532 q0 Z / EI (28) 

These steps are repeated for a range of N, values or interest. 
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CHAPTER IV. NUMERICAL EVALUATION AND DISCUSSION OF RESULTS 

The numerical evaluation of the derived solution was performed for a 
pavement of constant rectangular cross section, for pavement thicknesses h = 6 
in (15 cm), 8 in (20 cm), 10 in (25 cm), 12 in (30 cm) and 14 in (35 in). It 
may be easily verified that the obtained results are independent of the 
pavement width b because r 0 , A, I, and N, are linearly varying with b. The 
chosen pavement parameters are: 

E = 4.35 x 10 6 lb/in2 (3,000 kN/cm2 ) V-,, 0.3 

1 - 150 lb/ft 3 (23.6 kN/m3 )} 

(29) 

y being the unit weight of the pavement material. 

Since generally the reinforcement ratio in the pavement is very low (0.5 
to 0.75 percent), and it is usually placed near the mid-plane of the cross 
section, the effect of the reinforcing bars was neglected wh~_calculating the 
cross-sectional area A and the effective flexural stiffness EI - EI/(l - v2). 

The sliding frictional resistance values rt at the interface of pavement and 
base per unit length and unit width of pavement, as defined in equation (1), 
was determined from the test data in reference 3 and are shown in table 1. 

Table 1. Dependence of rt on h. (J) 

in 6 8 10 12 14 
h 

(cm) (15) (20) (25) (30) (35) 

lb/in2 1. 34 1. 55 1.65 1. 74 1.81 
* ro 

(N/cm2 ) (0.92) (107) (1.14) ( 1. 20) ( 1. 25) 

To closely approximate the test data in references 3 and 4, it was assumed 
thatµ= 25.4/in (10/cm) for all five pavement thicknesses, as shown in figure 
3. 

The obtained solution was evaluated for the above parameters. The 
results are shown in figure 6. Note the drop of the axial force in the buckled 
region. Also note that the magnitude of the lift-off displacement, wmax depends 
on the temperature increase T0 at.which buckling takes place; the higher the 
temperature increase the larger is wmax. For example for a pavement with h = 25 
cm, to an increase T0 = T, = 56·C there corresponds a wmax = 36 cm where as to 
T0 = 65 ·C there corresponds wmax s 75 cm; thus more then twice as large. 

To show the effect of pavement thickness hon the safe tempture 
increases above neutral, these results are plotted in figure 7 as a solid 
line. Also shown in this figure, as a dashed line, is the corresponding curve. 

15 
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Figure 7. Dependence of T, on pavement thickness h. 

for the continously reinforced concrete pavement (CRCP) far away from the 
bridge abutment as determined in references 1 and 2. Note the efect of the 
hinge and "rigid" abutment on the safe temperature increase. 

Next, consider the case when the pavement that was rigidly attached to 
the abutment exhibits, after a time, a transverse crack at this location. 
This will correspond to the case shown in figure 1, but with rotational 
resistance in the hinge that will depend on the degree of spalling, as 
indicated in figure 2. This resistance will increase the safe temperature 
increase above the values of the solid curve shown in figure 7. 

The axial compression force that a CRCP will generate is N, = EA a T0 • 

For the pavement parameters used above, h= 10 in (25 cm) and b= 24 ft 
(725 cm), this corresponds to an axial compression force, per °C, of: 

!!.t; - EAa = 3 000 x 25 x 725 X 0.9 X 10- 6 ; 490 kN/°C 
To 

This rather large compression force (per °C) demonstrates the importance of 
the neutral temperature on pavement blows. The higher the neutral temperature 
the less likely is the possibility that blowup will occur. Note, however, that 
although a higher neutral temperature may prevent blowups, it will lead (in 
CRCP's) to higher axial tens.ile forces in the pavement during the winter, that 
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may cause pavement ruptures. This indicates that the construction season has 
an effect on the pavement response. 

Some pavement engineers are of the opinion that the shearing resistance 
at the interface contributes to the formation of transverse cracks and thus 
should be minimized; for example, by placing plastic sheets at the interface. 
To establish this effect on blowups, the obtained solution was evaluated 
numerically for d1fferent values of the sliding frictional resistance 
parameter, rt, without changing the other parameters. The results are shown 
in figure 8. Note that, according to the above analysis and those of 
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Figure 8. Dependence of T, on rt 
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references 1 and 2, a reduction of this resistance, rt, also reduces the safe 
temperature range, 0 < T < T,, and thus has an adverse effect on pavement 
blowups. For preventing blowups, the sliding frictional resistances should be 
as high as possible. 

To reduce the axial forces that a concrete highway pavement will exert on a 
bridge pier, short section of a black top slab is often inserted between the 
pavement and the abutment. This allows the end zone of the pavement, during 
periods of high temperatures, to expand toward the bridge, preventing the 
build up of high compression forces in the vicinity of the bridge abutment. 
However, the continuous expansion and contraction of the pavement in this 
region creates maintenance problems, especially when the shearing resistance 
between pavement and subgrade is very small. 
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